Biomacromolecules such as DNA, proteins, and lipids in nature are constructed by 'bottom‐up' assembly with diverse functions and structural ordered characteristics. Supramolecular assemblies have been employed to mimic the natural complexity by manipulating the subtle variations of functional groups. Nevertheless, the intricate design of the driving forces or sophisticated synthesis of molecular skeletons poses challenges in fabricating highly ordered assemblies. Natural phenolic molecules with anisotropic functional groups exhibit potential as versatile building blocks for a wide range of supramolecular crystalline materials with tailored assembly and controlled functionalities. The inherent and anisotropic phenolic groups engage in ordered assembly with various materials via directional covalent bonds (e.g., condensation and coordination) as well as multiple molecular interactions (e.g., hydrogen bonding and π–π interactions), leading to the formation of supramolecular crystalline materials with diverse functionalities. This Concept presents the assembly mechanisms of crystalline phenolic materials and their applications, showcasing the effective utilization of ordered assembly by natural phenolic building blocks.