The KH module is a sequence motif recently identified in a number of diversified RNA-binding proteins and suggested to be the functional element responsible for RNA binding. So far, however, this hypothesis has not received direct experimental support. We have expressed the three KH-domains from heterogeneous nuclear ribonucleoprotein K (hnRNP-K), the poly(C)-binding proteins PCBP-1 and PCBP-2, the first three to four domains from the high-density binding protein HBP, the one and a half domain from the archaeon Halobacterium halobium ORF139 and one and a half domain of the fragile-X protein FMRl in Escherichia coli and analysed their nucleic-acid-binding properties in vitro. The results showed that the in vitro poly(rC)-binding activity of hnRNP-K can be assigned to KH-domain 3, whereas both domains 1 and 3 in the PCBPs bind poly(rC). In addition, all these domains exhibit binding activity towards other nucleic acids, albeit at a significantly lower level. The first KH domain from the FMRl protein binds poly(rG) and single-stranded and double-stranded DNA. The N-terminal three or four domains from HBP bind poly(rG) and, at a much lower level, single-stranded and double-stranded DNA. Thus, single KH domains are discrete and independent nucleic-acid-binding units. Moreover, different KH domains bind different nucleic acids, suggesting that KH domains are composed of a conserved, weakly nucleic-acid-binding, structure that is fine tuned, by sequence variation, resulting in sequencespecific nucleic-acid-binding entities.