Mutations in the PINK1 gene cause autosomal recessive Parkinson's disease. The PINK1 gene encodes a protein kinase that is mitochondrially cleaved to generate two mature isoforms. In addition to its protective role against mitochondrial dysfunction and apoptosis, PINK1 is also known to regulate mitochondrial dynamics acting upstream of the PD-related protein Parkin. Recent data showed that mitochondrial Parkin promotes the autophagic degradation of dysfunctional mitochondria, and that stable PINK1 silencing may have an indirect role in mitophagy activation. Here we report a new interaction between PINK1 and Beclin1, a key pro-autophagic protein already implicated in the pathogenesis of Alzheimer's and Huntington's diseases. Both PINK1 N-and C-terminal are required for the interaction, suggesting that full-length PINK1, and not its cleaved isoforms, interacts with Beclin1. We also demonstrate that PINK1 significantly enhances basal and starvation-induced autophagy, which is reduced by knocking down Beclin1 expression or by inhibiting the Beclin1 partner Vps34. A mutant, PINK1 W437X , interaction of which with Beclin1 is largely impaired, lacks the ability to enhance autophagy, whereas this is not observed for PINK1 G309D , a mutant with defective kinase activity but unaltered ability to bind Beclin1. These findings identify a new function of PINK1 and further strengthen the link between autophagy and proteins implicated in the neurodegenerative process. Parkinson's disease (PD) is a frequent neurodegenerative disorder resulting from massive degeneration of the dopaminergic neurons in the substantia nigra. Although most cases are sporadic, several genes are known to cause familial PD, especially with early onset. 1 Mutations in the PINK1 gene are the second most frequent cause of autosomal recessive PD after those in the Parkin gene. 2,3 The PINK1 gene encodes a serine-threonine kinase with an N-terminal mitochondrial import sequence, first characterized as a protein aimed at maintaining mitochondrial integrity and preventing apoptosis in response to cellular stressors. 2,[4][5][6][7][8] This neuroprotective role is partly exerted through phosphorylation of the mitochondrial chaperon, TRAP1, although cytoplasm-restricted PINK1 was also shown to protect against MPTP damage. 9,10 The full-length PINK1 (PINK1-FL) is processed within mitochondria to generate two mature proteins; 4,11 all three isoforms localize both to the mitochondria and cytosol, their relative ratio being regulated by several factors. [10][11][12][13] Increasing data have demonstrated that absence of functional PINK1 induces abnormalities of mitochondrial morphology. 6,14,15 In several studies (mostly in Drosophila), PINK1 was shown to promote fission acting upstream of the Fis1-Drp1 machinery, and the mitochondrial phenotype observed in PINK1 knockout flies or silenced cells was associated to reduced fission. 16,17 Subsequent studies in mammalian cell systems contradicted these results, demonstrating that mutant or silenced PINK1 resulted in incre...