Since the beginning of the 21st century, incremental sheet-metal-forming processes, such as single-point incremental forming (SPIF), have been the subject of extensive research. The SPIF process is highlighted as an efficient and cost-effective solution for producing complex parts with different materials and scales, surpassing conventional methods and being ideal for small series and customized products. Various machines can be used to implement SPIF, such as adapted milling machines, serial robots, and dedicated machines, each with its own advantages. However, although it requires a higher initial investment, a dedicated machine offers superior performance. The objective of this project was the creation of a compact and portable dedicated machine, which included the design of suitable kinematics, a mechanical project, and numerical control. The structural design led to the optimization of the dimensions of the robot arms. Direct and indirect kinematics were analyzed. Finally, the careful selection and adaptation of components were carried out, bearing in mind the support system of the forming punch, including the selection and sizing of motors, reducers, and linear actuators. A functional early prototype was successfully built and tested.