We investigate the vibrational resonance by the numerical simulation and theoretical analysis in an overdamped system with fractional order potential nonlinearities. The nonlinearity is a fractional power function with deflection, in which the response amplitude presents vibrational resonance phenomenon for any value of the fractional exponent. The response amplitude of vibrational resonance at low-frequency is deduced by the method of direct separation of slow and fast motions. The results derived from the theoretical analysis are in good agreement with those of numerical simulation. The response amplitude decreases with the increase of the fractional exponent for weak excitations. The amplitude of the high-frequency excitation can induce the vibrational resonance to achieve the optimal response amplitude. For the overdamped systems, the nonlinearity is the crucial and necessary condition to induce vibrational resonance. The response amplitude in the nonlinear system is usually not larger than that in the corresponding linear system. Hence, the nonlinearity is not a sufficient factor to amplify the response to the low-frequency excitation. Furthermore, the resonance may be also induced by only a single excitation acting on the nonlinear system. The theoretical analysis further proves the correctness of the numerical simulation. The results might be valuable in weak signal processing.