A data link control protocol for low earth orbit satellite networks has been developed to overcome throughput limitations inherent in event-based positive acknowledgment automatic-repeat-request class protocols. This was accomplished by relaxing a reliability constraint, specifically, the in-sequence delivery constraint. This relaxation results in a new class of link layer service, that of reliable datagram, and permits a fresh approach to link layer protocol design. In this paper we present one such protocol, the low altitude multiple satellite data link control (LAMS-DLC) protocol. We derive the throughput efficiency of LAMS-DLC and compare the results with HDLC (selective reject). The analysis is verified using an event-based simulation. Measurements suggest that LAMS-DLC provides near optimal throughput efficiencies in the target environment, while using significantly less buffer space than that required for HDLC-SREJ.