Astrocytes are glial cells specific the central nervous system involved in numerous brain functions including regulation of synaptic transmission and of immune reactions. There is mounting evidence suggesting astrocytic dysfunction in psychopathologies such as major depression, however, little is known about the underlying etiological mechanisms. Here we report a two-stage study investigating genome-wide DNA methylation associated with astrocytic markers in depressive psychopathology. We first characterized prefrontal cortex samples from 121 individuals (76 who died during a depressive episode and 45 healthy controls) for the astrocytic markers GFAP, ALDH1L1, SOX9, GLUL, SCL1A3, GJA1, and GJB6. A subset of 22 cases with consistently downregulated astrocytic markers was then compared to 17 matched controls using MBD2-sequencing followed by validation with high resolution melting and bisulfite Sanger sequencing. With these data, we generated a genome-wide methylation map unique to altered astrocyte-associated depressive psychopathology. The map revealed differentially methylated regions (DMRs) between cases and controls, the majority of which displayed reduced methylation levels in cases. Among intragenic DMRs, GRIK2 and BEGAIN were the most significant, and also significantly correlated with genes expression. Cell sorted fractions were investigated and demonstrated an important non-neuronal contribution of methylation status in BEGAIN.Functional cell assays revealed promoter and enhancer-like properties in this region, which were markedly decreased by methylation. Furthermore, a large number of our DMRs overlapped known ENCODE identified regulatory elements. Taken together, our data indicate significant differences in the methylation patterns specific to astrocytic dysfunction associated with depressive psychopathology, providing a potential framework for better understanding this disease phenotype.