2018
DOI: 10.1007/978-3-319-92402-1_4
|View full text |Cite
|
Sign up to set email alerts
|

The Language (and Series) of Hammersley-Type Processes

Abstract: We study languages and formal power series associated to (variants of) the Hammersley process. We show that the ordinary Hammersley process yields a regular language and the Hammersley tree process yields deterministic context-free (but non-regular) languages. For the Hammersley interval process we show that there are two relevant variants of formal languages. One of them leads to the same language as the ordinary Hammersley tree process. The other one yields non-context-free languages. The results are motivat… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

1
0

Authors

Journals

citations
Cited by 1 publication
(1 citation statement)
references
References 25 publications
0
1
0
Order By: Relevance
“…Heapability of integer sequences was introduced in [BHMZ11] and has been investigated further in [IB15,Por15,IB16,BGGS16,BS18,BIR18,BBD + 20]. Heapability of integer sequences can be decided by a simple greedy algorithm [BHMZ11] (see also [IB16] for an alternate approach based on integer programming, and [BBD + 20] for connections with Dilworth's theorem and an algorithm based on network flows).…”
Section: Related Workmentioning
confidence: 99%
“…Heapability of integer sequences was introduced in [BHMZ11] and has been investigated further in [IB15,Por15,IB16,BGGS16,BS18,BIR18,BBD + 20]. Heapability of integer sequences can be decided by a simple greedy algorithm [BHMZ11] (see also [IB16] for an alternate approach based on integer programming, and [BBD + 20] for connections with Dilworth's theorem and an algorithm based on network flows).…”
Section: Related Workmentioning
confidence: 99%