Mathematical models have been widely used to understand complex phenomena. Generally, the model is in the form of system of differential equations. However, when the model becomes complex, analytical solutions are not easily found and hence a numerical approach has been used. A number of numerical schemes such as Euler, Runge-Kutta, and Finite Difference Scheme are generally used. There are also alternative numerical methods that can be used to solve system of differential equations such as the nonstandard finite difference scheme (NSFDS), the Adomian decomposition method (ADM), Variation iteration method (VIM), and the differential transformation method (DTM). In this paper, we apply the differential transformation method (DTM) to solve system of differential equations. The DTM is semi-analytical numerical technique to solve the system of differential equations and provides an iterative procedure to obtain the power series of the solution in terms of initial value parameters.. In this paper, we present a mathematical model of HIV with antiviral treatment and construct a numerical scheme based on the differential transformation method (DTM) for solving the model. The results are compared to that of Runge-Kutta method. We find a good agreement of the DTM and the Runge-Kutta method for smaller time step but it fails in the large time step.