2022
DOI: 10.48550/arxiv.2202.11317
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

The Larger The Fairer? Small Neural Networks Can Achieve Fairness for Edge Devices

Abstract: Along with the progress of AI democratization, neural networks are being deployed more frequently in edge devices for a wide range of applications. Fairness concerns gradually emerge in many applications, such as face recognition and mobile medical. One fundamental question arises: what will be the fairest neural architecture for edge devices? By examining the existing neural networks, we observe that larger networks typically are fairer. But, edge devices call for smaller neural architectures to meet hardware… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 26 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?