Selectivity patterns provide insights into the causes of ancient extinction events. The Late Ordovician mass extinction was related to Gondwanan glaciation; however, it is still unclear whether elevated extinction rates were attributable to record failure, habitat loss, or climatic cooling. We examined Middle Ordovician-Early Silurian North American fossil occurrences within a spatiotemporally explicit stratigraphic framework that allowed us to quantify rock record effects on a per-taxon basis and assay the interplay of macrostratigraphic and macroecological variables in determining extinction risk. Genera that had large proportions of their observed geographic ranges affected by stratigraphic truncation or environmental shifts at the end of the Katian stage were particularly hard hit. The duration of the subsequent sampling gaps had little effect on extinction risk, suggesting that this extinction pulse cannot be entirely attributed to rock record failure; rather, it was caused, in part, by habitat loss. Extinction risk at this time was also strongly influenced by the maximum paleolatitude at which a genus had previously been sampled, a macroecological trait linked to thermal tolerance. A model trained on the relationship between 16 explanatory variables and extinction patterns during the early Katian interval substantially underestimates the extinction of exclusively tropical taxa during the late Katian interval. These results indicate that glacioeustatic sea-level fall and tropical ocean cooling played important roles in the first pulse of the Late Ordovician mass extinction in Laurentia.climate change | stratigraphy | sea level | Hirnantian | marine invertebrates T he Late Ordovician Mass Extinction (LOME) was the first of the "Big Five" Phanerozoic mass extinctions, and it eliminated an estimated 61% of marine genera globally (1). The LOME stands out among major mass extinctions in being unambiguously linked to climate change. The primary pulse of extinction near the Katian/Hirnantian stage boundary closely coincided with the rapid growth of south polar ice sheets on Gondwana (1-4). Expansion of continental ice sheets was accompanied by substantial cooling of the tropical oceans (5, 6), a major perturbation of the global carbon cycle (7-9) and a large drop in eustatic sea level (2, 5, 10, 11), which drained the vast cratonic seaways that characterized the Late Ordovician world (12). Extinction rates were particularly high around the tropical paleocontinent of Laurentia (13) where retreat of cratonic seas drove a sharp reduction in the area of preserved sedimentary rock between Katian and Hirnantian time (Fig. 1).The complex interrelated events surrounding the LOME exemplify a classic problem in paleobiology. Peaks in apparent extinction rate (14) are commonly associated with major gaps in the stratigraphic record or rapid changes in depositional environments. It is not always clear, however, whether these peaks simply reflect the spurious accumulation of last appearances at hiatal surfaces and lithofacies j...