Most somatic human cells lack telomerase activity because they do not express the telomerase reverse transcriptase (hTERT) gene. Conversely, most cancer cells express hTERT and are telomerase positive. For most tumors it is not clear whether hTERT expression is due to their origin from telomerase positive stem cells or to reactivation of the gene during tumorigenesis. Telomerase negative cells lack detectable cytoplasmic and nuclear hTERT transcripts; in telomerase positive cells 0.2 to 6 mRNA molecules/cell can be detected. This suggests that expression is regulated by changes in the rate of hTERT gene transcription. In tumor cell lines hTERT expression behaves like a recessive trait, indicating that lack of expression in normal cells is due to one or several repressors. Studies with monochromosomal hybrids indicate that several chromosomes may code for such repressors. A number of transcription factors, tumor suppressors, cell cycle inhibitors, cell fate determining molecules, hormone receptors and viral proteins have been implicated in the control of hTERT expression; but these studies have not yet provided a clear explanation for the tumor speci®c expression of the hTERT gene, and the cis-acting elements which are the targets of repression in normal cells still have to be identi®ed.