2024
DOI: 10.1017/fmp.2023.29
|View full text |Cite
|
Sign up to set email alerts
|

The least singular value of a random symmetric matrix

Marcelo Campos,
Matthew Jenssen,
Marcus Michelen
et al.

Abstract: Let A be an $n \times n$ symmetric matrix with $(A_{i,j})_{i\leqslant j}$ independent and identically distributed according to a subgaussian distribution. We show that $$ \begin{align*}\mathbb{P}(\sigma_{\min}(A) \leqslant \varepsilon n^{-1/2} ) \leqslant C \varepsilon + e^{-cn},\end{align*} $$ where $\sigma _{\min }(A)$ denotes the least singular value of A and the constants … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 48 publications
0
0
0
Order By: Relevance