This study aims to compare the effectiveness of three feature selection techniques, namely Principal Component Analysis (PCA), Information Gain (IG), and Recursive Feature Elimination (RFE), in predicting stock market conditions. This research uses three different datasets from Kaggle that contain stock market value prediction data. The results show that RFE performs better than PCA and IG in predicting market value with fairly precise accuracy. By using the RFE technique, this study was able to identify the most influential features in prediction, reduce the dimensionality of the data, and improve the performance of the prediction model. This provides significant benefits in the world of stocks, including improved investment decisions, reduced investment risk, improved trading strategy performance, and identification of promising investment opportunities. For future research, further comparative studies between other feature selection techniques can be conducted. This research has novelty in several aspects. First, it applies different feature selection techniques, namely Principal Component Analysis (PCA), Information Gain (IG), and Recursive Feature Elimination (RFE), in the context of stock market prediction. The use of these techniques to select the most relevant features in predicting stock market conditions provides a deeper understanding of the influence of these features on stock price movements. Furthermore, this research utilizes different datasets from Kaggle, which represent various stock market value predictions. The use of different datasets provides variation in the data and allows this research to examine the performance of feature selection techniques in various stock market contexts. In conclusion, this research provides insight into the effectiveness of feature selection techniques in stock market value prediction and provides guidance for market participants to improve investment decisions and trading performance in the stock market.