Fertilization marks the beginning of a new life by converting two terminally differentiated gametes into a single totipotent zygote. Central to this transition is a complex biological program commonly referred to as oocyte activation-an umbrella term for a series of profound changes that prepare the fertilized oocyte for totipotency [1, 2]. These include, among others, the completion of meiosis, the formation of the two pronuclei, and the selective translation of maternal RNAs. A remarkable aspect of oocyte activation is that it occurs in the absence of transcription. Not surprisingly, most of our knowledge of this process is centered on the posttranscriptional regulation of gene expression [3]. Yet, a recent body of evidence has brought new focus on the fundamental importance of transcriptional regulation during oogenesis as a primer for the oocyte-to-zygote transition [4]. In this issue of PLOS Genetics, Torres-Campana and colleagues [5] provide new compelling data further supporting the view that developing female germ cells rely on highly specific gene expression programs to later sustain oocyte activation and the oocyte-to-zygote transition. Through a female germ line-specific RNA interference screen in Drosophila melanogaster, the authors identified distinct chromatin remodelers required for the assembly of the paternal pronucleus at fertilization: lysine-specific demethylase 5 [Kdm5; also known in Drosophila as little imaginal discs (Lid)] and its interacting partners, Sin3A and histone deacetylase 1 (HDAC1/ Rpd3). In the absence of these transcriptional regulators, they observed that fertilized oocytes failed to efficiently remove protamines from sperm chromatin-an essential step for the subsequent merging of the two parental chromosome sets in early embryogenesis. Importantly, Kdm5 was also required for migration of the female pronucleus, clearly suggesting multiple functional requirements of this demethylase for successful karyogamy. The KDM5 family of proteins are Jumonji C lysine demethylases that remove methyl groups from tri-methylated and di-methylated lysine 4 on histone H3 (H3K4) [6]. Although tri-methylation of H3K4 (H3K4me3) is unlikely to be a primary regulator of gene expression [7, 8], this histone mark is highly enriched at the transcription start site of active genes [9] and may be an important aspect of gene expression robustness. Yet, the recruitment of Kdm5 to promotors is just one of the mechanisms through which these proteins can regulate transcription [10, 11]. In fact, Kdm5 can also regulate gene expression independently of its demethylase activity, through its interaction with lysine deacetylases (HDACs) and the nucleosome remodeling and deacetylase (NuRD) complex [12, 13]. Therefore, Kdm5 can behave, depending on the cellular context, as a positive or negative regulator of gene expression.