We report the measurement of ν-e elastic scattering from 8 B solar neutrinos with 3 MeV energy threshold by the Borexino detector in Gran Sasso (Italy). The rate of solar neutrino-induced electron scattering events above this energy in Borexino is 0.217 ± 0.038(stat) ± 0.008(syst) cpd/100 t, which corresponds to Φ ES 8 B = 2.4 ± 0.4± 0.1×10 6 cm −2 s −1 , in good agreement with measurements from SNO and SuperKamiokaNDE. Assuming the 8 B neutrino flux predicted by the high metallicity Standard Solar Model, the average 8 B νe survival probability above 3 MeV is measured to be 0.29±0.10. The survival probabilities for 7 Be and 8 B neutrinos as measured by Borexino differ by 1.9 σ. These results are consistent with the prediction of the MSW-LMA solution of a transition in the solar νe survival probability Pee between the low energy vacuum-driven and the high-energy matter-enhanced solar neutrino oscillation regimes.PACS numbers: 14.60. St, 26.65.+t, 95.55.Vj, 29.40.Mc
INTRODUCTION
Solar8 B-neutrino spectroscopy has been so far performed by the waterČerenkov detectors KamiokaNDE, SuperKamiokaNDE,. The first two experiments used elastic ν-e scattering for the detection of neutrinos, whereas SNO also exploited nuclear reaction channels on deuterium with heavy water as target. These experiments provided robust spectral measurements with ∼5 MeV threshold or higher for scattered electrons; a recent SNO analysis reached a 3.5 MeV threshold [5].We report the first observation of solar 8 B-neutrinos with a liquid scintillator detector, performed by the Borexino experiment [6,7] via elastic ν-e scattering. Borexino is the first experiment to succeed in suppressing all major backgrounds, above the 2.614 MeV γ from the decay of 208 Tl, to a rate below that of electron scatterings from solar neutrinos. This allows to reduce the energy threshold for scattered electrons by 8 B solar neutrinos to 3 MeV, the lowest ever reported for the electron scattering channel. To facilitate a comparison to the results of SuperKamiokaNDE [3] and SNO D 2 O phase [4], we also report the measured 8 B neutrino interaction rate with 5 MeV threshold.Since Borexino also detected low energy solar 7 Be neutri-2 nos [8,9], this is the first experiment where both branches of the solar pp-cycle have been measured simultaneously in the same target. The large mixing angle solution (LMA) of the MSW effect [10] predicts a transition in the ν e survival probability from the vacuum oscillation regime at low energies to the matter dominated regime at high energies. Results on solar 7 Be and 8 B neutrinos from Borexino, combined with prediction on the absolute neutrino fluxes from the Standard Solar Model [11][12][13], confirm that our data are in agreement with the MSW-LMA prediction within 1σ.
EXPERIMENTAL APPARATUS AND ENERGY THRESHOLDThe Borexino detector is located at the underground Laboratori Nazionali del Gran Sasso (LNGS) in central Italy, at a depth of 3600 m.w.e.. Solar neutrinos are detected in Borexino exclusively via elastic ν-e scattering in a li...