The existing solid electrolytes for lithium ion batteries suffer from low total ionic conductivity, which restricts its usefulness for the lithium-ion battery technology. Among them, the NASICON-based materials, such as Li1.3Al0.3Ti1.7(PO4)3 (LATP) exhibit low total ionic conductivity due to highly resistant grain boundary phase. One of the possible approaches to efficiently enhance their total ionic conductivity is the formation of a composite material. Herein, the Li2.9B0.9S0.1O3.1 glass, called LBSO hereafter, was chosen as an additive material to improve the ionic properties of the ceramic Li1.3Al0.3Ti1.7(PO4)3 base material. The properties of this Li1.3Al0.3Ti1.7(PO4)3-xLi2.9B0.9S0.1O3.1 (0 x 0.3) system have been studied by means of high temperature X-ray diffractometry (HTXRD), 7 Li, 11 B, 27 Al and 31 P magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), thermogravimetry (TG), scanning electron microscopy (SEM), impedance spectroscopy (IS) and density methods. We show here that the introduction of the foreign LBSO phase enhances their electric properties. This study reveals several interesting correlations between the apparent density, the microstructure, the composition, the sintering temperature and the ionic conductivity. Moreover, the electrical properties of the composites will be discussed in the terms of the bricklayer model (BLM). The highest value of σtot = 1.5 × 10 −4 S•cm −1 has been obtained for LATP-0.1LBSO material sintered at 800°C.