Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Outcome prediction for live-donor kidney transplantation improves clinical and patient decisions and donor selection. However, the concurrently used models are of limited discriminative or calibration power and there is a critical need to improve the selection process. We aimed to assess the value of various artificial intelligence (AI) algorithms to improve the risk stratification index. We evaluated pre-transplant variables among 66 914 live-donor kidney transplants (performed between 01/12/2007–01/06/2021) from the United Network of Organ Sharing database, randomized into training (80%) and test (20%) sets. The primary outcome measure was death-censored graft survival. We tested four machine learning models for discrimination (time-dependent concordance index, CTD, and area under the ROC curve) and calibration (integrated Brier score, IBS). We used decision curve analysis to assess the potential clinical utility. Among the models, the deep Cox mixture model showed the best discriminative performance (AUC = 0.70, 0.68, and 0.68 at 5, 10, and 13 years post-transplant, respectively). CTD reached 0.70, 0.67, and 0.66 at 5, 10, and 13 years post-transplant. The IBS score was 0.09, indicating good calibration. In comparison, applying the Living Kidney Donor Profile Index (LKDPI) on the same cohort produced a CTD of 0.56 and an AUC of 0.55–0.58 only. Decision curve analysis showed an additional net benefit compared to the LKDPI, ‘Treat all’ and ‘Treat None’ approaches. Our AI-based deep Cox mixture model, termed Live-Donor Kidney Transplant Outcome Prediction outperforms existing prediction models, including the LKDPI, with the potential to improve decisions for optimum live donor selection by ranking potential transplant pairs based on graft survival. This model could be adopted to improve the outcomes of paired exchange programs.
Outcome prediction for live-donor kidney transplantation improves clinical and patient decisions and donor selection. However, the concurrently used models are of limited discriminative or calibration power and there is a critical need to improve the selection process. We aimed to assess the value of various artificial intelligence (AI) algorithms to improve the risk stratification index. We evaluated pre-transplant variables among 66 914 live-donor kidney transplants (performed between 01/12/2007–01/06/2021) from the United Network of Organ Sharing database, randomized into training (80%) and test (20%) sets. The primary outcome measure was death-censored graft survival. We tested four machine learning models for discrimination (time-dependent concordance index, CTD, and area under the ROC curve) and calibration (integrated Brier score, IBS). We used decision curve analysis to assess the potential clinical utility. Among the models, the deep Cox mixture model showed the best discriminative performance (AUC = 0.70, 0.68, and 0.68 at 5, 10, and 13 years post-transplant, respectively). CTD reached 0.70, 0.67, and 0.66 at 5, 10, and 13 years post-transplant. The IBS score was 0.09, indicating good calibration. In comparison, applying the Living Kidney Donor Profile Index (LKDPI) on the same cohort produced a CTD of 0.56 and an AUC of 0.55–0.58 only. Decision curve analysis showed an additional net benefit compared to the LKDPI, ‘Treat all’ and ‘Treat None’ approaches. Our AI-based deep Cox mixture model, termed Live-Donor Kidney Transplant Outcome Prediction outperforms existing prediction models, including the LKDPI, with the potential to improve decisions for optimum live donor selection by ranking potential transplant pairs based on graft survival. This model could be adopted to improve the outcomes of paired exchange programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.