Context. Hanchuan Zupa granule (HCZP), as a Chinese traditional medicine, is used to treat asthma. Objective. To investigate the molecular mechanisms of HCZP treatment of asthma. Materials and Methods. Thirty Sprague Dawley (SD) rats were divided into normal, asthma, and HCZP groups (n = 10). The asthma model was sensitized by 1 mg ovalbumin (OVA)/aluminum hydroxide Al(OH)3mixture and then challenged with 1% aerosolized OVA for four weeks. Rats in the HCZP group received 10.08 g/kg/d HCZP for four weeks during OVA challenge. Then, lung tissues of rats in each group were collected for RNA sequencing. Moreover, the expression level of some core genes was detected by using western blotting and immunohistochemistry. Results. Inflammatory cell infiltration and pathological damage of the lungs improved in the HCZP group. Compared with the asthma group (0.049 ± 0.002 mm2/mm; 0.036 ± 0.006 mm2/mm; and 0.014 ± 0.001 mm2/mm), total wall thickness (0.042 ± 0.001 mm2/mm), inner wall thickness (0.013 ± 0.001 mm2/mm), and smooth muscle layer thickness (0.012 ± 0.001 mm2/mm) significantly decreased in the HCZP group. Bioinformatics analysis showed that hub genes such as bradykinin receptor B2 (Bdkrb2) and CD4 molecule (Cd4) had different expression patterns between model and HCZP groups. Two transcription factors, forkhead box Q1 (Foxq1) and nuclear factor of activated T cells 2 (Nfatc2), served important regulatory roles in asthma. Compared with the model group, Bdkrb2 protein expression increased and Nfatc2 protein expression decreased in the HCZP group. Discussion and Conclusion. HCZP could alleviate asthma via regulating the expression of several hub genes, which might serve as therapeutic targets for asthma. However, the mechanism of these genes will be studied in the future.