The Sarcin-Ricin RNA motif (SR motif) is one of the most prominent recurrent RNA building blocks that occurs in many different RNA contexts and folds autonomously, i.e., in a context-independent manner. In this study, we combined bioinformatics analysis with explicit-solvent molecular dynamics (MD) simulations to better understand the relation between the RNA sequence and the evolutionary patterns of SR motif. SHAPE probing experiment was also performed to confirm fidelity of MD simulations. We identified 57 instances of the SR motif in a non-redundant subset of the RNA X-ray structure database and analyzed their basepairing, base-phosphate, and backbone-backbone interactions. We extracted sequences aligned to these instances from large ribosomal RNA alignments to determine frequency of occurrence for different sequence variants. We then used a simple scoring scheme based on isostericity to suggest 10 sequence variants with highly variable expected degree of compatibility with the SR motif 3D structure. We carried out MD simulations of SR motifs with these base substitutions. Non isosteric base substitutions led to unstable structures, but so did isosteric substitutions which were unable to make key base-phosphate interactions. MD technique explains why some potentially isosteric SR motifs are not realized during evolution. We also found that inability to form stable cWW geometry is an important factor in case of the first base pair of the flexible region of the SR motif. Comparison of structural, bioinformatics, SHAPE probing and MD simulation data reveals that explicit solvent MD simulations neatly reflect viability of different sequence variants of the SR motif. Thus, MD simulations can efficiently complement bioinformatics tools in studies of conservation patterns of RNA motifs and provide atomistic insight into the role of their different signature interactions.