We provide an axiomatic characterization of the Logarithmic Least Squares Method (sometimes called row geometric mean), used for deriving a preference vector from a pairwise comparison matrix. This procedure is shown to be the only one satisfying two properties, correctness in the consistent case, which requires the reproduction of the inducing vector for any consistent matrix, and invariance to a specific transformation on a triad, that is, the weight vector is not influenced by an arbitrary multiplication of matrix elements along a 3-cycle by a positive scalar.