In this paper, we deal with stable homology computations with twisted coefficients for mapping class groups of surfaces and of 3-manifolds, automorphism groups of free groups with boundaries and automorphism groups of certain right-angled Artin groups. On the one hand, the computations are led using semidirect product structures arising naturally from these groups. On the other hand, we compute the stable homology with twisted coefficients by FI-modules. This notably uses a decomposition result of the stable homology with twisted coefficients due to Djament and Vespa for symmetric monoidal categories, and we take this opportunity to extend this result to pre-braided monoidal categories.