In this paper, high-efficiency green upconversion luminescence from a terbium (Tb3+)-doped germanate glass is reported. The upconversion luminescence involved a simultaneous three-photon absorption process. Compared with an emission spectrum excited at 377 nm, the upconversion luminescence bands of Tb3+ pumped by an fs laser showed a slight red-shift. This was ascribed to the redistribution of glass composition when the glass sample was exposed to the high-intensity laser, which results in the aggregation of Tb3+ around the laser-exposed focal region, which in turn results in the slight red-shift of luminescence. The upconversion luminescence intensities at 540, 590, and 620 nm strongly depended on the polarization angle of the femtosecond laser, which was ascribed to the different transmittances of a half-wavelength plate at different polarization angles, which results in the regularity change in fs laser power.