The ability of rat lung to remove the local anaesthetic drug bupivacaine from the blood was studied in isolated organs which were perfused either in an open (single-pass mode) or in a closed system (recirculating medium). Isolated perfused rat lungs exhibited a very low capacity to metabolize bupivacaine within 3 h during which the drug circulated continuously through the organ. The clearance values differed only by 0.2 ml/min from the control parameters in sham perfusions. The calculated extraction ratio was 0.2% and the elimination half-life was about 210 min. The volume of distribution of bupivacaine was 133 ml which remarkably surmounted the reference values obtained for sham perfusions. The distribution of bupivacaine into the pulmonary tissue was investigated applying the multiple indicator dilution technique to isolated lungs perfused in the single-pass mode. The mean elimination time of model compounds for distribution into the intravascular space, 14C-insulin, and the total water space, 3H-water, were 68 and 75 s at a flow rate of 6 ml/min. The volume of distribution was 5.9 ml for inulin and 6.5 ml for water. The mean transit time for concomitantly injected bupivacaine was 221 s and the volume of distribution was 14.4 ml. The respective parameters of sham perfusions performed without an isolated organ were substantially lower, i.e. mean elimination time 50, 50 and 61 s and distribution volume 4.9, 5.0 and 6.1 ml for inulin, water and bupivacaine.2+ f1p4