1980
DOI: 10.1002/nav.3800270411
|View full text |Cite
|
Sign up to set email alerts
|

The M/G/1 queue with instantaneous bernoulli feedback

Abstract: In this paper we are concerned with several random processes that occur in M/G/1 queues with instantaneous feedback in which the feedback decision process is a Bernoulli process. Queue length processes embedded at various times are studied. It is shown that these do not all have the same asymptotic distribution, and that in general none of the output, input, or feedback processes is renewal. These results have implications in the application of certain decomposition results to queueing networks.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

2
24
0
2

Year Published

1980
1980
2020
2020

Publication Types

Select...
7
2

Relationship

0
9

Authors

Journals

citations
Cited by 51 publications
(28 citation statements)
references
References 6 publications
2
24
0
2
Order By: Relevance
“…Disney et McNickle [16] montrent que ce processus n'est pas non plus un processus de renouvellement. 322 G. pujoiXE Takacs [14] montre que le processus des départs est un processus de Poisson.…”
Section: K>unclassified
See 1 more Smart Citation
“…Disney et McNickle [16] montrent que ce processus n'est pas non plus un processus de renouvellement. 322 G. pujoiXE Takacs [14] montre que le processus des départs est un processus de Poisson.…”
Section: K>unclassified
“…Juste après un instant de rebouclage, la file est dans l'état i avec la probabilité stationnaire II (i -1) (voir Disney et McNickle [16] pour la démonstration de cette propriété).…”
Section: K>unclassified
“…For instance these systems occur in computer networks. Disney, McNickle and Simon [5] have studied several random processes that occur in M I C I 1 queues with instantaneous feedback in which the feedback decision process is a Bernoulli process. D'Avignon and Disney [Z] have also considered the same queue with state dependent feedback mechanism.…”
Section: Introductionmentioning
confidence: 99%
“…The study of queueing models with Bernoulli feedback goes back to a classical paper by Takacs (1963). Further studies on the queue length, the total sojourn time and waiting time are provided by Disney et al (1980Disney et al ( , 1984. Fontana and Berzosa (1985) have extended some results obtained for the M/G/1 model with Bernoulli feedback to a more general feedback model with priorities.…”
mentioning
confidence: 97%