We show that by adding a supersymmetric Faddeev-Popov ghost sector to the recently constructed Bagger-Lambert theory based on a Lorentzian three algebra, we obtain an action with a BRST symmetry that can be used to demonstrate the absence of negative norm states in the physical Hilbert space. We show that the combined theory, expanded about its trivial vacuum, is BRST equivalent to a trivial theory, while the theory with a vev for one of the scalars associated with a null direction in the three-algebra is equivalent to a reformulation of maximally supersymmetric 2+1 dimensional Yang-Mills theory in which there a formal SO(8) superconformal invariance.