The paper concerns the distribution of apparent magnetic susceptibility in soil profiles located in the areas of topsoil magnetic susceptibility anomalies in Krakow. The type of land use, possible sources of magnetic carriers, and the type of soil were taken into account. Additionally, at each soil profile, a comparison between soil magnetic susceptibility and the results of geochemical analyzes of soil samples was made. The study shows very characteristic changes in magnetic susceptibility with depth, reflecting the interdependencies between natural and anthropogenic factors. A visible magnetic susceptibility maximum at the depth of 10-30 cm is observed at each soil profile. The maximum is associated mainly with the deposition of atmospheric dust and its vertical range depends on the level of anthropopression and natural conditions of soils. At the depth above 40 cm in the eastern part of Krakow, a correlation between the magnetic susceptibility and the soil type (chernozems de-veloped on loess) was found. All indicates that the thicknesses of contaminated upper horizons are not accidental and they depend on human interactions with the environment and the type of soil. An attempt at template establishment with the sources of magnetic particle carriers for different places in the city was made. As the result, in high urbanized sites, the extreme values of magnet-ic susceptibility rapidly change in short vertical distances can identify the richness of anthropo-genic layers with various types of anthropogenic ferrous material and/or additionally Fe-carrying objects buried in soils. In industrialized sites, anthropogenic input plays the most important role in the creation of soil magnetic characteristics. What is more, industrial pollution hides the natural magnetic properties of chernozems. In opposite, the studies at the sites under low anthropopression (mainly located in forests) allow for better insight into magnetic proper-ties arising during pedogenic processes, indirectly giving information about soil conditions. In the forest areas, the lowest values of soil magnetic susceptibility were measured. Additionally, the influence of pedogenic and lithogenic factors on forest soils is manifested in the results. Among the sites concerned, particular attention should be paid to the vicinity of the steel plant because of the agricultural land in the surroundings.