The accelerated process of soil erosion by water and wind, responsible for transport and redistribution of a large amount of carbon-enriched sediments, has a strong impact on the global carbon budget. The breakdown of aggregates by erosivity of water (raindrop, runoff) and wind weakens the stability of soil C (organic and inorganic) and aggravates its vulnerability to degradation processes, which lead to the emission of greenhouse gases (GHGs) including CO2, CH4, and N2O, depending on the hydrothermal regimes. Nonetheless, a part of the eroded soil C may be buried, reaggregated and protected against decomposition. In coastal steep lands, (e.g., Taiwan, New Zealand) with a short distance to burial of sediments in the ocean, erosion may be a sink of C. In large watersheds (i.e., Amazon, Mississippi, Nile, Ganges, Indus, etc.) with a long distance to the ocean, however, most of the C being transported is prone to mineralization/decomposition during the transit period and is a source of GHGs (CO2, CH4, N2O). Land use, soil management and cropping systems must be prudently chosen to prevent erosion by both hydric and aeolian processes. The so-called plague of the soil, accelerated erosion by water and wind, must be effectively curtailed.