Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Respiratory long-term facilitation is a form of neuronal plasticity that is induced following exposure to intermittent hypoxia. Long-term facilitation is characterized by a progressive increase in respiratory motor output during normoxic periods that separate hypoxic episodes and by a sustained elevation in respiratory activity for up to 90 min after exposure to intermittent hypoxia. This phenomenon is associated with increases in phrenic, hypoglossal or carotid sinus nerve inspiratory-modulated discharge. The examination of long-term facilitation has been steadily ongoing for approximately 3 decades. During this period of time a variety of animal models (e.g. cats, rats and humans), experimental preparations and intermittent hypoxia protocols have been used to study long-term facilitation. This review is designed to summarize the strengths and weaknesses of the models, preparations and protocols that have been used to study LTF over the past 30 years. The review is divided into two primary sections. Initially, the models and protocols used to study LTF in animals other than humans will be discussed, followed by a section specifically focused on human studies. Each section will begin with a discussion of various factors that must be considered when selecting an experimental preparation and intermittent hypoxia protocol to examine LTF. Model and protocol design recommendations will follow, with the goal of presenting a prevailing model and protocol that will ultimately ensure standardized comparisons across studies.
Respiratory long-term facilitation is a form of neuronal plasticity that is induced following exposure to intermittent hypoxia. Long-term facilitation is characterized by a progressive increase in respiratory motor output during normoxic periods that separate hypoxic episodes and by a sustained elevation in respiratory activity for up to 90 min after exposure to intermittent hypoxia. This phenomenon is associated with increases in phrenic, hypoglossal or carotid sinus nerve inspiratory-modulated discharge. The examination of long-term facilitation has been steadily ongoing for approximately 3 decades. During this period of time a variety of animal models (e.g. cats, rats and humans), experimental preparations and intermittent hypoxia protocols have been used to study long-term facilitation. This review is designed to summarize the strengths and weaknesses of the models, preparations and protocols that have been used to study LTF over the past 30 years. The review is divided into two primary sections. Initially, the models and protocols used to study LTF in animals other than humans will be discussed, followed by a section specifically focused on human studies. Each section will begin with a discussion of various factors that must be considered when selecting an experimental preparation and intermittent hypoxia protocol to examine LTF. Model and protocol design recommendations will follow, with the goal of presenting a prevailing model and protocol that will ultimately ensure standardized comparisons across studies.
We examined whether exposure to intermittent hypoxia (IH) during wakefulness impacted on the apnea/hypopnea index (AHI) during sleep in individuals with sleep apnea. Participants were exposed to twelve 4-min episodes of hypoxia in the presence of sustained mild hypercapnia each day for 10 days. A control group was exposed to sustained mild hypercapnia for a similar duration. The intermittent hypoxia protocol was completed in the evening on day 1 and 10 and was followed by a sleep study. During all sleep studies, the change in esophageal pressure (ΔPes) from the beginning to the end of an apnea and the tidal volume immediately following apneic events were used to measure respiratory drive. Following exposure to IH on day 1 and 10, the AHI increased above baseline measures (day 1: 1.95 ± 0.42 fraction of baseline, P ≤ 0.01, vs. day 10: 1.53 ± 0.24 fraction of baseline, P < 0.06). The indexes were correlated to the hypoxic ventilatory response (HVR) measured during the IH protocol but were not correlated to the magnitude of ventilatory long-term facilitation (vLTF). Likewise, ΔPes and tidal volume measures were greater on day 1 and 10 compared with baseline (ΔPes: -8.37 ± 0.84 vs. -5.90 ± 1.30 cmH(2)0, P ≤ 0.04; tidal volume: 1,193.36 ± 101.85 vs. 1,015.14 ± 119.83 ml, P ≤ 0.01). This was not the case in the control group. Interestingly, the AHI on day 10 (0.78 ± 0.13 fraction of baseline, P ≤ 0.01) was significantly less than measures obtained during baseline and day 1 in the mild hypercapnia control group. We conclude that enhancement of the HVR initiated by exposure to IH may lead to increases in the AHI during sleep and that initiation of vLTF did not appear to impact on breathing stability. Lastly, our results suggest that repeated daily exposure to mild sustained hypercapnia may lead to a decrease in breathing events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.