Caveolae, the major source of caveolin-1 protein, are specialized invaginated microdomains of the plasma membrane that act as organizing centers for signaling molecules in the immune system. In the present study, we report the cloning and characterization of caveolin-1 (mCav-1) from mandarin fish (Siniperca chuatsi) and study on the roles of mCav-1 in the fish Jak-Stat signaling pathway and in virus infection. The cDNA sequence of mCav-1 was 707bp in size, encoding a protein of 181 amino acids, which was different from the mammalian protein (178 amino acids). The deduced amino acid sequence of mCav-1 shared similar architecture with vertebrate caveolin-1 proteins, but mCav-1 lacked a phosphorylation site (y14). The major subcellular location of mCav-1 was in the caveolae, where the protein appeared to have major functions. Real-time PCR revealed that the expression of the mandarin fish Mx, IRF-1, SOCS1, and SOCS3 genes involved in the poly(I:C)-induced Jak-Stat signaling pathway was impaired by the mCav-1 scaffolding domain peptide (mSDP). In mandarin fish fry (MFF-1) cells, the protein levels of mCav-1 were markedly up-regulated at 12 and 24h post-infection with ISKNV (infectious spleen and kidney necrosis virus). In addition, ISKNV entry into MFF-1 cells was significantly inhibited by mSDP, and the inhibition was dose-dependent. Thus, ISKNV infection was apparently associated with mCav-1 protein and may utilize the caveolae-related endocytosis pathway. The findings reported here further our understanding of the function of caveolin-1 in the complex signal transduction network in fish immune systems and in the cellular entry mechanism of iridoviruses.