Neisseria gonorrhoeae survives anaerobically by reducing nitrite to nitrous oxide catalyzed by the nitrite and nitric oxide reductases, AniA and NorB. P aniA is activated by FNR (regulator of fumarate and nitrate reduction), the two-component regulatory system NarQ-NarP, and induced by nitrite; P norB is induced by NO independently of FNR by an uncharacterized mechanism. We report the results of microarray analysis, bioinformatic analysis, and chromatin immunoprecipitation, which revealed that only five genes with readily identified NarP-binding sites are differentially expressed in narP ؉ and narP strains. These include three genes implicated in the truncated gonococcal denitrification pathway: aniA, norB, and narQ. We also report that (i) nitrite induces aniA transcription in a narP mutant; (ii) nitrite induction involves indirect inactivation by nitric oxide of a gonococcal repressor, NsrR, identified from a multigenome bioinformatic study; (iii) in an nsrR mutant, aniA, norB, and dnrN (encoding a putative reactive nitrogen species response protein) were expressed constitutively in the absence of nitrite, suggesting that NsrR is the only NO-sensing transcription factor in N. gonorrhoeae; and (iv) NO rather than nitrite is the ligand to which NsrR responds. When expressed in Escherichia coli, gonococcal NarQ and chimaeras of E. coli and gonococcal NarQ are ligand-insensitive and constitutively active: a "locked-on" phenotype. We conclude that genes involved in the truncated denitrification pathway of N. gonorrhoeae are key components of the small NarQP regulon, that NarP indirectly regulates P norB by stimulating NO production by AniA, and that NsrR plays a critical role in enabling gonococci to evade NO generated as a host defense mechanism.In contrast to Escherichia coli that can inhabit a variety of environments and utilize numerous carbon sources and electron acceptors, some niche dwellers such as the obligate human pathogen Neisseria gonorrhoeae are far less versatile. The gonococcus can grow aerobically using glucose, lactate, or pyruvate as carbon sources and electron donors, and for many years it was thought to be an obligate aerobe. However, following the isolation of gonococci from patients alongside obligate anaerobes, it became clear that they could survive in the absence of oxygen in vivo using nitrite as an alternative electron acceptor (1, 2). Although gonococci express both a copper-containing nitrite reductase, AniA (NGO1276), and a single subunit nitric oxide reductase, NorB (NGO1275), which reduce nitrite via nitric oxide to nitrous oxide (2-5), denitrification is incomplete, because they lack genes for nitrate reduction, and there is a premature stop codon in the nitrous oxide reductase gene (nosZ, XNG1300), and the putative regulator of the nitrous oxide reduction genes, nosR (XNG1301), is also degenerate (see Fig. 1A). During oxygen-limited or anaerobic growth, AniA is the major anaerobically induced outer membrane protein (6). It is expressed by bacteria infecting patients, confirming th...