Improper waste lead-acid battery (LAB) disposal not only damages the environment, but also leads to potential safety hazards. Given that waste best available treatment technology (BATT) plays a major role in environmental protection, pertinent research has largely focused on evaluating typical recycling technologies and recommending the BATT for waste LABs. First the evaluation indicators were selected based on the analysis of main factors affecting the pollution control of waste LAB treatment. The relative weights of each indicator were determined via the Delphi-attribute hierarchy model (AHM) in the second step. To determine the BATT, the attributive mathematics theory was adopted to calculate the attribute measure of single and multiple indices. Then, five recycling technologies commonly used in the secondary lead industry were estimated using the proposed evaluation system, and the feasibility of the recommended BATT was preliminarily verified. The results indicated that mixed smelting technology (MST), pre-desulfurization and multi-chamber smelting technology (PD-MCST), and direct smelting technology (DST) were found to perform well and were therefore deemed optimal for waste LAB disposal at this stage. The validation study showed that the DST can meet the requirements of pollution control, which is consistent with the evaluation results.