Purpose
This study aims to investigate how the coupling of Material and Energy Flow Analysis (MEFA) with Life Cycle Assessment (LCA) under an urban metabolism (UM) perspective (referred to as the UM-LCA approach) can support the design, evaluation, and monitoring of urban-level circular strategies. For this purpose, we apply the UM-LCA approach to the urban area of Umeå (Sweden) by expanding the goal and scope of a recent MEFA study conducted by the authors of the article.
Methods
The modeling combines MEFA with LCA and is performed both retrospectively and prospectively. The MEFA was performed in the prior study following a bottom-up approach to map and quantify material and energy flows in the urban system at the sectoral level. The quantified flows are used in the present study to construct the life cycle inventory (LCI) model of the urban system. The LCI model is first used as a basis of the retrospective LCA (rLCA), which is conducted to assess the environmental performance of the urban system with its sectors. The LCI model is then modified according to future scenarios and is used as a basis of the prospective LCA (pLCA), which is performed to assess the environmental implications of implementing circular strategies in the future.
Results and discussion
The rLCA shows that the construction and household sectors are major drivers of environmental impacts in the urban system, with households being the largest contributors to 11 out of 12 analyzed impact categories. It also reveals the most impacting flows within these sectors, including food in households and steel in the construction sector. These findings indicate that the construction and household sectors and their most impacting flows should be prioritized in a circular strategy. Furthermore, the pLCA highlights that a future circular strategy promoting reductions in the material used in these two sectors could lead to higher reductions in all impact categories, ranging from 4.3 to 8.6%, than a strategy focused only on recycling, which could lead to reductions ranging from 0.2 to 1.2%.
Conclusions
This study concludes that the UM-LCA approach has great potential to comprehensively analyze, both retrospectively and prospectively, the environmental performance of an urban system providing valuable insights that could support policy makers in designing, assessing, and monitoring urban-level circular strategies. However, further research should address identified limitations of the UM-LCA approach (e.g., limited available data, inability to consider social and economic aspects) to facilitate its applicability and enhance its comprehensiveness.