Abstract:A finite dimensional Lie algebra L with magic number c(L) is said to satisfy Rentschler's property if it admits an abelian Lie subalgebra H of dimension at least c(L) − 1. We study the occurrence of this new property in various Lie algebras, such as nonsolvable, solvable, nilpotent, metabelian and filiform Lie algebras. Under some mild condition H gives rise to a complete Poisson commutative subalgebra of the symmetric algebra S(L). Using this, we show that Milovanov's conjecture holds for the filiform Lie alg… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.