Abstract:We look at the maximal entropy (MME) measure of the boundaries of connected components of the Fatou set of a rational map of degree ≥ 2. We show that if there are infinitely many Fatou components, and if either the Julia set is disconnected or the map is hyperbolic, then there can be at most one Fatou component whose boundary has positive MME measure. We also replace hyperbolicity by the more general hypothesis of geometric finiteness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.