Probabilistic transition system specifications (PTSSs) in the $nt \mu f\theta
/ nt\mu x\theta$ format provide structural operational semantics for
Segala-type systems that exhibit both probabilistic and nondeterministic
behavior and guarantee that bisimilarity is a congruence for all operator
defined in such format. Starting from the $nt \mu f\theta / nt\mu x\theta$
format, we obtain restricted formats that guarantee that three coarser
bisimulation equivalences are congruences. We focus on (i) Segala's variant of
bisimulation that considers combined transitions, which we call here "convex
bisimulation"; (ii) the bisimulation equivalence resulting from considering
Park & Milner's bisimulation on the usual stripped probabilistic transition
system (translated into a labelled transition system), which we call here
"probability obliterated bisimulation"; and (iii) a "probability abstracted
bisimulation", which, like bisimulation, preserves the structure of the
distributions but instead, it ignores the probability values. In addition, we
compare these bisimulation equivalences and provide a logic characterization
for each of them.Comment: In Proceedings EXPRESS/SOS 2015, arXiv:1508.0634