Modeling was performed on the base of the DH system located in Omsk, Russia, where the DH network temperature requirements are not met and design outdoor temperature of extreme -37°C is. Surveyed investment in a transmission line to avoid penalties on disturbances is projected to have an original supply temperature of 150°C and is denoted as Case-1. The second idea (Case-2) envisages installing a heat pump and increasing the supply temperature in peak load periods during the heating season. The third option is to use of in-room terminal systems to provide heating to individual zones. Case-4 assumes maintaining an ordinary DH network without using any energy-efficient alternative and significant repair which means that the system continuous working ‘as is’. The fifth option introduces low temperature district heating (LTDH) concept featuring a low supply temperature and smart control. To sum up, this research indicates location of a heat pump and also shows how the piping system will be offset to allow the normal operation. This study presents a framework to represent, aggregate, dynamic thermal model and modernize a DH system based on a high-level equation-based simulation software and a five-option feasibility study.