Berkshire RG12 2SY C K It has been suggested,, originally by Twomey (SCEP, 1970), that anthropogenic aerosols in the troposphere can influence the microphysical properties of clouds and in turn their reflectivity (albedo), thereby exerting a radiative influence on climate. This chapter presents the theoretical basis for of this so-called indirect forcing and reviews pertinent observational evidence and climate model calculations of its magnitude and geographical distribution. We restrict consideration to liquid-water clouds, in part because these clouds are the principal clouds thought to be influenced by anthropogenic aerosols, and in part because the processes responsible for nucleation of ice clouds are not sufficiently well understood to permit much to be said about any anthropogenic influence. The argument for anthropogenic influence on cloud albedo rests on the premise that aerosol particle number concentrations are substantially increased by industrial emissions. As a consequence, the number concentration of cloud droplets Ned, which is determined by the number concentration of aerosol particles in the precloud air, is also increased. This in turn leads to an enhanced multiple scattering of light within clouds isnd to an increase in the optical depth and albedo of the cloud. In contrast the physical thickness, liquid water content, and liquid water path of the cloud, which are governed to close approximation by large-scale thermodynamics, are considered to be unchanged oir at least not greatly influenced by the increase in cloud droplet concentration. There is evidence that this assumption may not be entirely correct. In particular there is indication that the decrease in drop size may inhibit precipitation development, increasing cloud liquid water content and cloud lifetime, both of which effects would contribute 1 further to reflection of solar radiation by clouds; this phenomenon is also considered here.The present chapter reviews the theory of the indirect forcing phenomenon and estimates of its magnitude, field measurements addressing aspects of this phenomenon, and approaches to describing this phenomenon in climate models. This review is necessarily fairly selective. For more extended accounts see Hobbs (1993), Andreae (1995), andHeintzenberg (1995).
THEORETICAL BASIS OF INDIRECT FORCINGAerosol influences on cloud albedo and shortwave forcing. The theoretical basis for a dependence of cloud albedo on cloud droplet number density, and in turn on the number density of the aerosol particles on which cloud droplets form, is outlined by Twomey (1974Twomey ( , 1977a. To relate cloud albedo to optical depth and thus to microphysical properties we employ an analytical expression obtained from the two-stream approximation for the reflectance (albedo) RCT of a nonabsorbing, horizontally homogeneous cloud (e.g., Bohren, 1987): Here g is the asymmetry parameter for single scattering (mean cosine of the scattering angle), approximately 0.85 for cloud droplets of radius much greater than the wavelength of visib...