Thermodilution is the gold standard for cardiac output measurement in critically ill patients. Its application in extracorporeal therapy is limited, as a portion of the thermal indicator is drawn into the extracorporeal circuit. The behaviour of thermodilution signals in extracorporeal circuits is unknown. We investigated thermodilution curves within a closed-circuit and assessed the impact of injection volume, flow and distance on the behaviour of the thermodilution signals and catheter constants. We injected 3, 5, 7 and 10 ml of thermal indicator into a heated closed circuit. Thermistors at distances of 40, 60, 80, and 100 cm from the injection port recorded the thermodilution signals (at flow settings of 0.5, 1, 1.5, and 2 L/min). Area under the curve (AUC), rise time, exponential decay and catheter constants were analysed. Linear mixed-effects models were used to evaluate the impact of circuit flow, distance and injection volume. Catheter positioning did not influence AUC (78 injections). Catheter constants were independent of flow, injection volume or distance to the injection port. The distance to the injection port increased peak temperature and rise time and decreased exponential time constant significantly. The distance to the injection port did not influence catheter constants, but the properties of the thermodilution signal itself. This may influence measurements that depend on the exponential decay of the thermodilution signal such as right ventricular ejection fraction.