In all land plants, cellulose is synthesized from hexameric plasma membrane complexes. Indirect evidence suggests that in vascular plants the complexes involved in primary wall synthesis contain three distinct cellulose synthase catalytic subunits (CESAs). In this study, we show that CESA3 and CESA6 fused to GFP are expressed in the same cells and at the same time in the hypocotyl of etiolated seedlings and migrate with comparable velocities along linear trajectories at the cell surface. We also show that CESA3 and CESA6 can be coimmunoprecipitated from detergent-solubilized extracts, their protein levels decrease in mutants for either CESA3, CESA6, or CESA1 and CESA3, CESA6 and also CESA1 can physically interact in vivo as shown by bimolecular fluorescence complementation. We also demonstrate that CESA6-related CESA5 and CESA2 are partially, but not completely, redundant with CESA6 and most likely compete with CESA6 for the same position in the cellulose synthesis complex. Using promoter--glucuronidase fusions we show that CESA5, CESA6, and CESA2 have distinct overlapping expression patterns in hypocotyl and root corresponding to different stages of cellular development. Together, these data provide evidence for the existence of binding sites for three distinct CESA subunits in primary wall cellulose synthase complexes, with two positions being invariably occupied by CESA1 and CESA3, whereas at least three isoforms compete for the third position. Participation of the latter three isoforms might fine-tune the CESA complexes for the deposition of microfibrils at distinct cellular growth stages. C ellulose microfibrils are synthesized from a multiprotein complex inserted into the plasma membrane. These ''rosette'' complexes consist of six globules, each of which contains multiple cellulose synthase catalytic subunits (CESAs). These complexes migrate in the plasma membrane along microtubules, propelled by the polymerization of the -1,4-glucan chains (1).Plant CESA genes are members of multigene families. Arabidopsis has 10 CESA isoforms that, based on sequence comparison with other plant species, can be classified into six orthologous groups (2). Mutational analysis shows that these six groups of isoforms have nonredundant functions in cellulose synthesis. Mutants for three isoforms (CESA4, CESA7, and CESA8) show defects in cellulose synthesis specifically in secondary walls (3)(4)(5). Microarray data show that the mRNAs for the three genes are coregulated (6, 7). The three proteins are expressed in the same cell types during secondary cell wall deposition, and co-immunoprecipitation (IP) experiments show that all three proteins interact (3). Although the interactions remain to be validated in vivo, these data strongly suggest that at least in these cells the complexes contain three isoforms. Mutants for isoforms CESA1, CESA3, and CESA6 have cellulose defects in primary cell walls (8-11). The three genes are also coregulated at the mRNA level (12). It is not known, however, whether the corresponding proteins are ...