Background
The position of the head relative to the spine can be used to evaluate the true global balance in patients with degenerative spinal kyphosis (DSK). However, it is still not clear how the position of the head is related to the spinal-pelvic parameters and lumbar muscles, which are most commonly considered.
Methods
Sixty-seven patients with DSK admitted in the hospital from January 2017 to January 2019 were retrospectively analyzed. All patients had whole spine X-ray and lumbar MRI. The head position parameters include: the angles of both lines joining the center of acoustic meati (CAM) to the center of the bi-coxofemoral axis (BA) (CAM-BA) and the most superior point of dentiform apophyse of C2 odontoid (OD) to BA (OD-BA) with the vertical line; the distance between the vertical line passing CAM and the posterior upper edge of the S1 (CAM-SVA). The spinal parameters include: C7 sagittal vertical axis (C7-SVA), thoracic kyphosis (TK), thoracolumbar kyphosis (TLK), and lumbar lordosis (LL). The pelvic parameters include: pelvic incidence (PI), pelvic tilt (PT) and sacral slope (SS). The relative cross-sectional area (RCSA) of bilateral multifidus, erector spinae and psoas muscle at L3/4 and L4/5 segments were measured. The correlations between head position parameters and the spinal-pelvic parameters and RCSA of lumbar muscles were analyzed, respectively.
Results
Significant positive correlations were found between each two of CAM-SVA, C7-SVA, CAM-BA and OD-BA (p < 0.001). SS was found to be significantly positively correlated with CAM-BA (r = 0.377, p = 0.034) and OD-BA (r = 0.402, p = 0.023). CAM-BA was found to be significantly negatively correlated with TK (r = − 0.367, p = 0.039). Significant positive correlations were found between RCSA of multifidus at L3/4 level and CAM-SVA (r = 0.413, p = 0.021), CAM-BA (r = 0.412, p = 0.019) and OD-BA (r = 0.366, p = 0.04).
Conclusions
Our study showed that the head position relative to the spine were significantly correlated to some spinal-pelvic parameters, and the lower lumbar multifidus muscle. The compensatory mechanisms of the global sagittal balance status should also involve the head position area.