Mature human erythrocyte membranes contained specific, high affinity (Kd 33 X 10-11 M) folate binding moieties. Folate binding was pH, time-and temperature-dependent, saturable, and was much greater for pteroylmonoglutamate and 5-methyltetrahydrofolate than 5-formyltetrahydrofolate and amethopterin. On detergent solubilization of membranes, two peaks of specific folate binding with M, 2 200,000 and 160,000 were identified on Sephacryl S-200 gel filtration chromatography in Triton X-100, and this corresponded to two similar peaks of immunoprecipitated material when solubilized iodinated membranes were probed with anti-human placental folate receptor antiserum. Age-dependent separation of erythrocytes by Stractan density gradients revealed a sevenfold greater folate binding capacity in membranes purified from younger compared with aged erythrocytes. Since this difference was not reflected in proportionately higher immunoreactive folate binding protein, (as determined by a specific radioimmunoassay for these proteins) or differences in affinity in younger than aged cells, these findings indicate that erythrocyte folate binding proteins become progressively nonfunctional at the onset of red cell aging.