Bacterial cells possess multiple cytoskeletal proteins involved in a wide range of cellular processes. These cytoskeletal proteins are dynamic, but the driving forces and cellular functions of these dynamics remain poorly understood. Eukaryotic cytoskeletal dynamics are often driven by motor proteins, but in bacteria no motors that drive cytoskeletal motion have been identified to date. Here, we quantitatively study the dynamics of the Escherichia coli actin homolog MreB, which is essential for the maintenance of rod-like cell shape in bacteria. We find that MreB rotates around the long axis of the cell in a persistent manner. Whereas previous studies have suggested that MreB dynamics are driven by its own polymerization, we show that MreB rotation does not depend on its own polymerization but rather requires the assembly of the peptidoglycan cell wall. The cell-wall synthesis machinery thus either constitutes a novel type of extracellular motor that exerts force on cytoplasmic MreB, or is indirectly required for an as-yetunidentified motor. Biophysical simulations suggest that one function of MreB rotation is to ensure a uniform distribution of new peptidoglycan insertion sites, a necessary condition to maintain rod shape during growth. These findings both broaden the view of cytoskeletal motors and deepen our understanding of the physical basis of bacterial morphogenesis.bacterial cytoskeletal dynamics | cell-wall organization | peptidoglycan synthesis | cell growth C ytoskeletal proteins play an important role in bacterial morphogenesis (1). Of the bacterial cytoskeletal proteins, the widely conserved actin homolog MreB is particularly important for bacterial cells to elongate and maintain a rod-like shape. MreB forms polymers that are associated with the cell membrane and distributed along the length of the cell in many rod-shaped bacteria (2). These polymeric MreB structures are essential for the maintenance of rod-like cell shape, as their disruption leads to cell rounding. Although MreB is essential for proper morphogenesis, bacterial cell shape is ultimately determined by the shape of the peptidoglycan cell-wall sacculus, which in turn is controlled by the cell-wall synthesis machinery. The cell wall, which is composed of stiff glycan strands cross-linked by flexible peptide linkers, forms a load-bearing structure that can counteract the intracellular turgor pressure. Cell-wall assembly requires peptidoglycan subunits to be synthesized, polymerized into glycan strands by transglycosylase enzymes, and cross-linked into the existing cell-wall network by transpeptidase enzymes. MreB directly or indirectly associates with a number of proteins that have been implicated in cell-wall assembly, such that MreB is believed to act upstream of the cell-wall assembly machinery to direct the synthesis enzymes to the sites of cell-wall insertion.Previous studies have demonstrated that MreB structures are dynamic in Bacillus subtilis and Caulobacter crescentus (3-7). To date, no motor proteins have been shown to either ...