Reduction of the tethered carborane 1,2-μ-(CH(2)SiMe(2)CH(2))-1,2-closo-C(2)B(10)H(10) followed by metallation with {CpCo} or {(p-cymene)Ru} fragments affords both C,C'-dimethyl 4,1,2-MC(2)B(10) and 4,1,6-MC(2)B(10) species. DFT calculations indicate that the barriers to isomerisation of both 4-Cp-4,1,2-closo-CoC(2)B(10)H(12) and 4-(η-C(6)H(6))-4,1,2-closo-RuC(2)B(10)H(12) to their respective 4,1,6-isomers are too high for this to be the origin of the unexpected formation of 4,1,6-MC(2)B(10) products (in marked contrast to the related isomerisation of 1,2-closo-C(2)B(11)H(13) to 1,6-closo-C(2)B(11)H(13)), and, indeed, the 4,1,2-species are recovered unchanged from refluxing toluene. Equally, the DFT-calculated profile for the isomerisation of [7,8-nido-C(2)B(10)H(12)](2-) to [7,9-nido-C(2)B(10)H(12)](2-) suggests that the unexpected formation of 4,1,6-metallacarboranes is unlikely to result from isomerisation of a reduced (nido) carborane following desilylation. Instead, the source of the 4,1,6-MC(2)B(10) compounds is traced to desilylation of 1,2-μ-(CH(2)SiMe(2)CH(2))-1,2-closo-C(2)B(10)H(10) by Li or Na prior to reduction. The supraicosahedral metallacarboranes 1,8-Me(2)-4-Cp-4,1,8-closo-CoC(2)B(10)H(10), 1,12-Me(2)-4-Cp-4,1,12-closo-CoC(2)B(10)H(10) and 1,12-Me(2)-4-(p-cymene)-4,1,12-closo-RuC(2)B(10)H(10) are also reported with all new species characterised both spectroscopically and crystallographically.