A general model is discussed for assessing the energy release due to the pinning of solute atoms to partial dislocations. The present approach discloses the influence of dislocation character distributions on the magnitude of this energy. In order to test its validity in ctCu-Al alloys, differential scanning calorimetry (DSC) evaluations associated with the different peaks involved during linear heating were performed employing both cold worked and quenched materials. Dislocation densities were calculated from recrystallization traces. On the basis of this model it was concluded that the observed energy difference between the deformed and the quenched materials during the exothermic peak designated as Stage 2 corresponds to the pinning process. It was also concluded that nearly equal number of edge and screw dislocations are present in the dislocation configuration of deformed alloys. Nevertheless, it is proposed that dislocation-induced order might also occur as a consequence of enhanced solute concentration around the partials.