Aluminum (Al) anodization leads to formation of porous structures with a broad spectrum of applications. Naturally or intentionally created defects on Al surfaces can greatly affect pore initiation. However, there is still a lack of systematic understanding on the defect dependent morphology evolution. In this paper, anodization processes on unpolished, polished, and nanoimprinted Al substrates are investigated under high voltages up to 600 V in various acid solutions. A porous structure is obtained on the unpolished and nanoimprinted Al foils with rough surface texture, whereas a compact film can be rationally obtained on the polished Al foil with a highly smooth surface. The observation of surface roughness dependent oxide film morphology evolution could be originated from the high voltages, which increases the threshold requirement of defect size or density for the pore initiation. Electrostatics simulation results indicate that inhomogeneous electric field and its corresponding localized high current induced by the surface roughness facilitate the initiation of nanopores. In addition, the porous films are utilized as templates to produce polydimethylsiloxane nanocone and submicrowire arrays. The nanoarrays with different aspect ratios present tunable wettability with the contact angles ranging from 144.6°to 56.7°, which hold promising potentials in microfluidic devices and self-cleaning coatings.