Endovascular revascularization is the preferred treatment for peripheral arterial disease. Restenosis often occurs as a response to procedure-induced arterial damage. Reducing vascular injury during endovascular revascularization may improve its success rate. This study developed and validated an ex vivo flow model using porcine iliac arteries, obtained from a local abattoir. Twenty arteries (of 10 pigs) were equally allocated to two groups: a mock-treated control group and an endovascular intervention group. Arteries of both groups were perfused with porcine blood for 9 min, including 3 min of balloon angioplasty in the intervention group. Vessel injury was assessed by calculating the presence of endothelial cell denudation, vasomotor function, and histopathological analysis. MR imaging displayed balloon positioning and inflation. Endothelial cell staining showed 76% of denudation after ballooning compared to 6% in the control group (<i>p</i> < 0.001). This was confirmed by histopathological analysis, showing a significantly reduced endothelial nuclei count after ballooning compared to the controls (median: 22 vs. 37 nuclei/mm, <i>p</i> = 0.022). In the intervention group, vasoconstriction and endothelium-dependent relaxation were significantly reduced (<i>p</i> < 0.05).We present an ex vivo flow model to test the effects of endovascular therapy on the vessel’s wall morphology, endothelial denudation, and endothelial-dependent vasomotor function under physiological conditions. Additionally, it allows the future testing of human arterial tissue.