Three distinct, 30-to 80-cm-thick, graded, multilayered, coarse-grained sandstone layers, intercalated in the late Messinian mudstones of the Colombacci formation in Lago Mare facies of the Trave section are interpreted as tsunamiites (Ts1-Ts3). Each of these layers is sheet-like and could be followed along strike over several tens of meters. The lower two layers (Ts1-Ts2) occur in the lower part of the Colombacci formation and the third (Ts3) just below a conspicuous white ''colombacci'' limestone near the top of the formation. The three sandstone layers represent unique sedimentary events within the 120-m-thick San Donato-Colombacci mudstones, which contain many thin, finegrained, possibly storm-related turbidites. Each of the three clastic layers is overall graded and strongly cross-bedded. A single layer consists of a stack of several graded sublayers that are eroded into the underlying mudstones and into each other. Absence of hummocky cross-stratification (HCS) indicates that the layers are not produced during a large, catastrophic storm event. Current ripples such as dm-sized trough cross-beds suggest strong, prolonged, unidirectional currents, capable of carrying coarse conglomeratic sands. Climbing ripples in middle-fine sand units indicate a high suspension load settling under waning current strength. Each of the Ts1-Ts3 beds satisfies a combination of criteria, described in this paper, that allow interpretation as a tsunamiite in an offshore environment. Tsunamiite Ts2 is underlain by a 15-cm-thick meshwork of synsedimentary fissures, filled with coarse sand. Ground movements induced by strong earthquakes probably caused these crevasses. The uniqueness of each layer, the erosion of the base of each of the sublayers into underlying mudstones and previously deposited sublayer and the consistent stacking of graded sandstone beds within each of the three layers, underlain by earthquakeproduced fissures, strongly point to deposition by traction currents produced by the surges of a large tsunami event, triggered by a large vertical fault movements. Vertical fault displacements most likely occurred along the thrust faults like the Sibilline thrust at the SW of the Laga foreland basin, which were active at late Messinian times. A series of