This article presents the concept of a mathematical description of a three-phase, four-wire asymmetrical electric circuit in decomposition into Voltages’ Physical Components (VPC), associated with distinctive physical phenomena in the load. This is an alternative method of mathematical description to the Currents’ Physical Components (CPC) still being developed since the end of the last century. According to previous studies, the improvement of the power factor in three-phase systems is possible by observing several components. Compensation for the scattered power is possible only by using a reactive compensator connected in series with the load. Thanks to the presented analytical method, it is possible to design compensators connected in series with the load. The VPC power theory opens the possibility of improving the power factor in three-phase networks for loads with asymmetry between phases. Due to the unfavorable impact of high currents on the compensator branches, the method proposed in the article can improve the energy quality in local low-power grids. However, the possibility of its practical use in high-power industrial networks is questionable.