We review analytical solutions of the Einstein equations which are expressed in terms of elementary functions and describe Friedmann-Lemaître-Robertson-Walker universes sourced by multiple (real or effective) perfect fluids with constant equations of state. Effective fluids include spatial curvature, the cosmological constant, and scalar fields. We provide a description with unified notation, explicit and parametric forms of the solutions, and relations between different expressions present in the literature. Interesting solutions from a modern point of view include interacting fluids and scalar fields. Old solutions, integrability conditions, and solution methods keep being rediscovered, which motivates a review with modern eyes.